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~ Beta (c;d;)
~ Gamma ( 1; 1)
c~ Gamma ( ,; 2) and H ~ Gamma ( 3; 3)

Note: Throughout the document, we use the following parametrization of gamma density,
X ~ Gamma ( ; ),

f(x) o« x “le=*

In the above formulation, ; = logit ( ;) where ; presents the reference allele frequency
for the i™ individual at the I'" SNP. ()(-) represents a Dirac delta function indicating a
point mass at (0;0). In addition, N(x; ; ) denotes a normal density with mean and
precision and MV N,(x; M; T) represents a p-dimensional multivariate normal with mean
vector M and precision matrix T. For each of the Dirichlet Processes, we have assumed
gamma priors for the scalar mass parameters ¢ and  following ?; alternatively they
could be taken as to be xed constants. Figure 1 displays the model as a directed acyclic
graph (DAG).
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Step la: Perform the following proposal step for R iterations. For i = 1;2;:::; N; propose
a new distinct atom membership (st) for the i observation. The approach of ? uses the
conditional prior as a proposal distribution for s{. Let s_;) denote the set of all con guration

indicators minus s;, and let nt"



Although the above log target density does not take a standard distributional form, the
density is log-concave, and so a new value for }; can be sampled using Adaptive-Rejection
sampling (?).

STEP 2: Update for

In order to update each |, we employed the Blocked Gibbs Sampler of ?. The Blocked Gibbs
Sampler is based on the stick-breaking representation of the Dirichlet Process, discussed in
the work of ?. Although the stick-breaking representation of the DP involves an in nite
sum of discrete points, in actual implementation, the Blocked Gibbs Sampler utilizes a nite
approximation, imposing a limit F_ to the number of distinct atoms amongst the . Denote
this collection of distinct points as * = 7;:;; £ . ? show that even for large sample
sizes, a limit of F_ = 150 provides a suitable approximation to the Dirichlet Process. Because
of the point mass mixture construction in Hgy, without a loss of generality, we can include
the additional distinct point  to represent the cluster denoting no e ect (i.e. ; =0 and

12 = 0) with associated model weight . Similar to the con guration representation for ;,
de ne the pointers z; where zy = j if and only if | = [ for j =0;1;2;:::;F_. Then de ne
m; as the number of z; currently equal to j.

Step 2a: For j = 1;2;::;F; update ;. Note, because ; represents the null e ect clus-
ter, its value need not be updated. If m; =0, then [ ~ H,. Elsedraw [~ MV Ny (M*;T~)
where

T = G}Gj"'T
M* = (T Gj Y-B—X I +T M

Y denotes a n x 1 column vector of the quantitative traits Y;. Similarly, By represents a
n x 1 column vector where the)"Tel¢rm2ntdlLras532 T 1.PR89003185 ] GYITVPHIS [(L1).IREA- 177 BT 05E9)



Step 2b: For | =1;2;:::;L; independently sample z, where,

P(zi=0) o« L(]Is; ¢ )
P=]j) « (- )pjL Ys; ;5 forj=12;1F
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Step 2c: Update and the stick-breaking weights (p;). Sample ~ Beta(c, + mg;d; +

(L —myg)). Then for j =1;2;::; F; set

pp = Vi
Pk = (1-V)A—-Vy)



STEP 3b: Update for

1. Sample xy| y ~ Beta( u;L)
2. Let 4 equal

s+ Ky —1
3+ Ky —1+L( 3—log(Xn))

G =
3. Sample g|Xg; Kg ~
n Gamma( 3+ Ky; 3 —log(xy))+ (1 — ) Gamma( 3+ Ky —1; 3 —1og(Xn))

STEP 4: Update error precision

Sample ~ Gamma( *; *) where
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